Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 9258, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915267

RESUMO

The use of infrared lasers to power accelerating dielectric structures is a developing area of research. Within this technology, the choice of the dielectric material forming the accelerating structures, such as the photonic band gap (PBG) structures, is dictated by a range of interrelated factors including their dielectric and optical properties, amenability to photo-polymerization, thermochemical stability and other target performance metrics of the particle accelerator. In this direction, electronic structure theory aided computational screening and design of dielectric materials can play a key role in identifying potential candidate materials with the targeted functionalities to guide experimental synthetic efforts. In an attempt to systematically understand the role of chemistry in controlling the electronic structure and dielectric properties of organic polymeric materials, here we employ empirical screening and density functional theory (DFT) computations, as a part of our multi-step hierarchal screening strategy. Our DFT based analysis focused on the bandgap, dielectric permittivity, and frequency-dependent dielectric losses due to lattice absorption as key properties to down-select promising polymer motifs. In addition to the specific application of dielectric laser acceleration, the general methodology presented here is deemed to be valuable in the design of new insulators with an attractive combination of dielectric properties.

2.
Phys Rev Lett ; 116(6): 064801, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26918995

RESUMO

We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic-band-gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have the potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. We conducted an experiment at the Argonne Wakefield Accelerator test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.

3.
Phys Rev Lett ; 109(16): 164801, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23215084

RESUMO

We report the results of the recent high power testing of superconducting radio frequency photonic band gap (PBG) accelerator cells. Tests of the two single-cell 2.1 GHz cavities were performed at both 4 and 2 K. An accelerating gradient of 15 MV/m and an unloaded quality factor Q(0) of 4×10(9) were achieved. It has been long realized that PBG structures have great potential in reducing long-range wakefields in accelerators. A PBG structure confines the fundamental TM(01)-like accelerating mode, but does not support higher order modes. Employing PBG cavities to filter out higher order modes in superconducting particle accelerators will allow suppression of dangerous beam instabilities caused by wakefields and thus operation at higher frequencies and significantly higher beam luminosities. This may lead towards a completely new generation of colliders for high energy physics and energy recovery linacs for the free-electron lasers.

4.
Rev Sci Instrum ; 81(10): 104701, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21034104

RESUMO

We have designed, fabricated, and tested a novel photonic band gap (PBG) channel-drop filter (CDF) operating at around 240 GHz. A PBG CDF is a device that allows the channeling of selected frequencies from continuous spectra into separate waveguides through select defects in a PBG structure. It is compact and configurable, and thus, it can be employed for millimeter-wave spectrometry with applications in communications, radio astronomy, and radar receivers for remote sensing and nonproliferation. In this paper we present the design, modeling, and fabrication methods used to produce a silicon-based PBG CDF, and demonstrate its ability to filter the frequency of 240 GHz with a linewidth of approximately 1 GHz and transmission of 25 dB above background.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...